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Abstract—Traffic accident has become a significant health and development threat with rapid urbanizations. An accurate urban
accident forecasting enables higher-quality police force pre-allocation and safe route planning for both traffic administrations and
travelers, maximumly reducing injuries and damages. Off-the-shelf short-term accident forecasting methods, which focus on modeling
static region-wise correlations with existing neural networks, mostly performed on hour levels and with single step. However, given the
dynamic nature of road networks and expanding urban areas, it is challenging when the spatiotemporal granularity of forecasting
improves as the rareness of accident records and complexity of long-term future dependencies. To address these challenges, we
propose a unified framework RiskSeq, to foresee sparse urban accidents with finer granularities and multiple steps in spatiotemporal
perspective. In particular, we design region-wise proximity measurements and temporal feature differential operations, and embed them
into a novel Differential Time-varying Graph Convolution Network to dynamically capture traffic variations. Considering the hierarchical
spatial dependencies and obvious context influences, a hierarchical sequence learning structure is devised by introducing contextual
factors into a step-wise decoder. The multi-scale spatial risks are learned jointly to boost the risk predictions based on risk-gather and
risk-assign networks. Extensive experiments demonstrate our RiskSeq can increase 5% to 15% performances on two datasets.

Index Terms—Traffic accident forecasting, spatiotemporal data mining, graph convolutional network, urban computing.
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1 INTRODUCTION

Traffic accident has become into one of the biggest pub-
lic health threats as World Health Organization (WHO)
reported approximately 1.25 million people have died on
roads during 2015 [1]. With constantly increasing number of
vehicles, traffic accident forecasting is of great significance to
reduce traffic injuries and ensure urban safety. For example,
with some newly proposed models for predicting daily
statewide accident risks, the fatality rate of traffic accidents
in Tennessee has been reduced by 8.16% in 2016 [2]. There-
fore, a spatiotemporal finer-grained and multi-granularity
accident forecasting can not only benefit the public safety
managements but also enhance the service qualities of
various intelligent transportation systems, including real-
time safe route recommendations for individual drivers and
other location-based services.

There have been a wide range of researches delving
into time-series predictions, inlcuding particle swarm op-
timization (PSO)-based [3], [4], [5] and ARIMA-based [6]
methods. And general spatiotemporal predictions [7], [8],
[9], [10], [11] have also been further studied. Neverthe-
less, all these existing works focus on continuous element
forecasting. Regarding the issue of traffic accident forecast-
ing, differing from those above-mentioned intensive and
continuous predictions, it can be seen as a sporadic event
forecasting. Specifically, traffic accident forecasting can be
further classified into different categories with regard to the
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temporal granularities of long-term (daily predictions) and
short-term (hourly or temporal finer-grained predictions)
as well as the number of prediction steps, as summarized
in Table 1. In particular, regarding long-term forecasting,
methods like deep dynamic fusion network (DFN) [12],
Hetero-ConvLSTM [13] and classfication-and-regression
tree [13] were proposed to predict future daily risks by
modeling the spatiotemporal heterogeneous data. However,
these long-term forecasting approaches could not be di-
rectly used to address the more practical issue of real-
time accidents predictions. To this end, early approaches
for short-term accident predictions were proposed based on
traditional machine learning [14], [15]. Nevertheless, none
of these approaches have considered both the spatial and
temporal correlations jointly. Recently, deep learning tech-
niques including LSTM [16], autoencoder-based [17], and
spatiotemporal attention-based [18], [19] were employed to
address the challenging task by modeling citywide traffic
risks during different periods as sequences, and these meth-
ods are all single temporal granularity and suffer the zero-
inflated issue due to sporadic distributions of short-term
accidents [20].

Unfortunately, predictions with single temporal step in-
cluding both long-term traffic risk predictions and single-
step short-term works, cannot independently support urban
transportation applications since the durations of urban
trips may be 15 minutes to hours in modern metropolis [21].
Further, traffic administrative agencies at different levels
should have various spatial granularity requirements on
predicting traffic risks due to their different jurisdiction
scopes. Therefore, a spatiotemporal multi-granularity risk
prediction, which enables adjustable predictive horizons
and multiple spatial scales for risk predictions, is sponta-
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neously required for satisfying the diversified requirements
of transportation services, ranging from sequential urban
route planning to multiple spatial-level traffic controlling.
Recent pioneering multi-step prediction methods have been
widely used in the field of traffic. For instance, [22] em-
ployed attention-enhanced encoder-decoder mechanisms to
capture temporal correlations in road speeds, and [10],
[23] utilized hierarchical graph structures to recursively
extract sequential dependencies in taxi demands and traffic
flows. Despite the superiority of graph convolution and
hierarchical structure have been demonstrated, these meth-
ods on predicting continuous elements cannot be directly
applied to predict accidents due to the sporadic nature and
less conspicuous temporal tendency of accidents. Typically,
Figure 1 reports the newly observed time-varying region-
wise correlations and differential associations among urban
traffics and accidents 1 in both New York City (NYC) and
Suzhou Industry Park (SIP). These kinds of spatiotemporal
correlations and differential associations have never been
considered in previous accident predictions, and may inher-
ently reduce the performances of previous works. Further-
more, as shown in Figure 1(a), there only exist two accident
records during one selected 10-min interval in NYC, so the
prediction performances will deteriorate with the increase
of time steps. Therefore, it is even challenging to achieve
urban traffic risk predictions with a spatiotemporal multi-
granularity perspective.

In this paper, we propose a novel deep learning network
to foresee citywide accident risks in a spatiotemporal multi-
granularity fashion, where multiple spatial scales and tem-
poral steps are jointly predicted. Specifically, we first sum-
marize the sparse spatiotemporal traffic-related information
into two categories and correspondingly provide respective
solutions. Then we explicitly model correlations between
time-varying traffic statuses and accidents with a carefully
designed Differential Time-varying Graph Convolutional
Network (DT-GCN). Finally, we alleviate the sequential
error accumulation by feeding step-wise contextual factors
into the decoder and further boost the performance of multi-
step discrete accident prediction by leveraging three-scale
highly correlated forecasting tasks. The contributions of our
work are summarized as follows.

• To our best knowledge, this is the first work tar-
geting spatiotemporal multi-granularity urban traffic
risk prediction where the sporadic event prediction
is transferred into a learnable self-adaptive ranking
task. It provides a paradigmatic DNN-based solution
to spatiotemporal multi-granularity forecasting of
sporadic events.

• We take an initial step to systematically deal with the
spatiotemporal sparsity challenges according to their
origins. Based on observations in short-term traffics
and accidents, we provide a novel node-wise proxim-
ity measurement and signal-wise differential opera-
tion integrated DT-GCN, to extract the time-varying
region-wise correlations among urban traffics and
accidents, and further benefit GCN community.

1. Note here the differential associations indicate the correlations
among the variation of traffic volumes within adjacent time intervals
and subsequent accidents in same subregions.

TABLE 1: Summarization of traffic accident prediction

Time
granularity Single Step Multiple steps

Long-term [24], [2] [12], [13]

Short-term [14], [25], [26], [17],
[20], [16], [19], [27] Our work

• We devise a novel hierarchical learning structure,
Context-Guided LSTM, to decode multi-step risks in
three spatial scales. The step-wise context is injected
into the decoder to learn region-context interactions
and consequently guides the multi-scale learning
with risk assignment and gathering layers.

(a) Dynamic region-wise correlations

Morning           Afternoon            Evening

(b) Circled Accidents with traffic volume differential associations

(i) NYC Region #41                                       (ii) SIP Region #104

Fig. 1: Novel observations in the joint analysis of urban traf-
fics and accidents. Subfigure (a) illustrates the correlations
between congestion propagations and accident risks, the
correlations between accident concurrences and similar road
structures, as well as an the example of dynamic region-
wise dependencies according to commute and tidal flows.
Subfigure (b) illustrates the obvious differential associations
between traffics and accidents, and here ’Delta’ refers to the
traffic volume variations within two adjacent intervals.

The rest of this paper is organized as follows. We
first give preliminaries and formal definitions in Section 2.
Then we detail our spatiotemporal multi-granularity acci-
dent forecasting in Section 3. Then extensive experiments
and substantial ablation studies are conducted and demon-
strated in Section 4. The related works are briefly reviewed
in Section 5, followed up by further discussion in Section 6.
Finally, we conclude our paper in Section 7.

2 PRELIMINARIES AND DEFINITIONS

In this section, we first present the preliminaries and some
basic definitions of this paper, then formally define the
problem studied in this paper.

In our work, we first divide the study area into q
medium-sized rectangular regions (’rectangular regions’ in
short). Each rectangular region consists of several small-
sized square subregions (’subregions’ in short). The hier-
archical division of NYC city is illustrated in Figure 2. We
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assume there are totally m subregions in the study area, and
subsequently model the m subregions with an urban graph.
Definition 1 (Urban Graph). The study area can be defined

as an undirected graph, called Urban Graph G(V, E). Here,
V = {v1, v2, · · · , vm}, where vi denotes the i-th square-
shaped urban subregion. Given two vertexes vi, vj ∈ V ,
the edge eij ∈ E within these two vertexes indicates the
connectedness between these two subregions, where

eij =


1

iff the traffic elements within two
subregions have strong correlations

0 otherwise
(1)

Note that the traffic elements of a vertex consist of two
aspects, static road network features and dynamic traffic
features. And for each subregion, we adaptively select the
most ρ correlated nodes in the urban graph as its neighbors
to reduce the computational complexity where ρ is the per-
centage of the selected neighbors versus the total nodes in
the graph, then the corresponding nonzero items in affinity
matrix As and A∆t

o (introduced in the next section) refer to
the subregions with strong correlations.

The dynamic traffic features of subregion vi in a specific
time interval ∆t can be modeled by ld parts, e.g., (a) the
intensity of human activities, represented by traffic volume
TVvi(∆t); (b) the traffic conditions, represented by the aver-
age traffic speed avi(∆t); and (c) the level of traffic accident
risks rvi

(∆t). Formally, traffic features are defined as below.
Definition 2 (Static Road Network Features). For urban sub-

region, vi ∈ V , the static features of road networks within the
subregion, cover ls statistical spatial attributes of the numbers
of road lanes, road types, road segment lengths and widths,
snow removal priorities and the numbers of overhead electronic
signs, for all road segments inside, can be denoted as a fixed-
length vector si. The static road network features of the entire
urban region can be formulated as S = {s1, s2, · · · , sm}.

Definition 3 (Dynamic Traffic Features). For vi ∈ V , the
dynamic traffic features of vi within a given interval ∆t can
be formulated as fvi(∆t) = {TVvi(∆t), avi

(∆t), rvi(∆t)}.
rvi(∆t) is the summation of the number of accidents
weighted by the corresponding severity levels 2. In particular,

rvi(∆t) =
3∑

j=1
j ∗ τ∆t

vi (j), where j indicates the type of

accident severity, τ∆t
vi (j) denotes the number of accidents of

type j. So the accident risk distributions and the dynamic
traffic features of the entire urban domain within ∆t can be
represented by R(∆t) = {rv1

(∆t), rv2
(∆t), · · · , rvm(∆t)}

and F(∆t) = {fv1
(∆t), fv2

(∆t), · · · , fvm(∆t)}, respec-
tively.

Definition 4 (Multi-granularity Spatiotemporal Traf-
fic Accident Prediction). Given static road network
features S and the historical dynamic traffic features
F(∆t) (∆t = 1, 2, · · ·T ) , our task is to predict both coarse-
grained and fine-grained accident distributions OC(∆t′) and
OF (∆t′), along with the selected M high-risk subregions

2. We define three accident risk types: minor accidents, injured acci-
dents, and fatal accidents [26]. We assign weights 1, 2, and 3 to the three
types, respectively.

TABLE 2: Description of Notation

Symbol Description
m Number of subregions in the urban graph
V = {vi} Spatial urban graph node set of subregions
E ∈ Rm×m Edges between connected nodes
As ∈ Rm×m Static affinity matrix
A∆t

o ∈ Rm×m Dynamic overall affinity matrix in ∆t

S ∈ Rm×ls Static road network features in subregions
R(∆t) ∈ Rm×1 Citywide fine-grained risks in ∆t

F(∆t) ∈ Rm×ld Citywide dynamic traffic features in ∆t
OF ∈ Rm×r Citywide fine-grained risks in predicted r intervals
OC ∈ Rq×r Citywide coarse-grained risks in predicted r intervals
VM ∈ RM×r High-risk subregions in predicted r intervals

VM (∆t′), where ∆t′ = T + 1, T + 2, · · ·T + r and r de-
notes the length of the target spatiotemporal accident series to
forecast.

All the mathematical notations that will be used in this
paper have been defined and listed in Table 2.

Fig. 2: Hierarchical division of NYC

3 SPATIOTEMPORAL MULTI-GRANULARITY TRAF-
FIC ACCIDENT FORECASTING

The spatiotemporal multi-granularity perspective in our
task can be explained as predicting accidents for multiple
time steps in both coarse-grained and fine-grained spatial
granularities. In this section, we first show the overview
of our proposed spatiotemporal multi-granularity traffic
accident prediction framework RiskSeq, and elaborate its
different modules.

3.1 Framework Overview

As illustrated in Figure 3, our proposed framework RiskSeq
includes a data preprocessing component and two main
modules: i) DT-GCN encoder module, and ii) Context-
Guided LSTM decoder.

3.2 Data Preprocessing

Given the specific characteristics of traffic accidents, such
as sparse and sporadic distribution, incomplete and hetero-
geneous multi-source information collection, we propose a
series of strategies to jointly mitigate these issues.

3.2.1 Addressing Spatial Heterogeneities in Accident Pre-
diction
As described in [27], high-risk regions tend to be focused
on downtown, leading to spatial imbalance and neglect the
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Fig. 3: Framework Overview of RiskSeq

relatively high-risk rural areas. Thus, in our work, the subre-
gions are organized hierarchically as illustrated in Figure 2.
The medium-sized rectangular regions and square-shaped
subregions are responsible for collecting coarse-grained and
fine-grained accident distributions, respectively. Then mul-
tiple spatial scales of distributions can be predicted and
high-risk subregions in different medium-sized rectangular
regions are highlighted with considering local risk statuses,
especially benefiting urban areas in periphery.

3.2.2 Tackling Dual-sparsity Challenges in Accident Predic-
tion
According to sparsity origins of sparse datasets, we cate-
gorize the sparsity information into two scenarios, intrinsic
sparsity and fake sparsity. Regarding intrinsic sparsity, the
sensed data is sparse and sporadic distributed due to the
inherent sparse nature of itself. For instance, given inter-
val ∆t, there are seldom traffic accidents and most items
in R(∆t) are zeros. For fake sparsity, the sensed data is
spontaneously intensive, and this kind of sparsity is caused
by the sparse distribution of sensing devices. For example,
the traffic flows of road intersections captured by stationary
surveillance cameras are fictitiously sparse due to the sparse
sensor deployments. We demonstrate these two cases in
Figure 4. Given the sparse nature of these two kinds of data,
directly applying machine learning including deep learning
methods will fall into zero-inflated issue [28], which predicts
all results as zero values.

Overcoming zero-inflated issue in intrinsic sparsity
issue. Deep Neural Networks (DNNs) suffer from zero-
inflated issues and predict invalid results if the nonzero
items in training labels are extremely rare [20], [28]. To
discriminate a large number of zero risk values in short-
term intervals and enhance the training feasibility, a pri-
ori knowledge-based data enhancement (PKDE) strategy is
proposed. Specifically, for interval ∆t, we transform zero
items in risk setsR(∆t) to negative values that are different

from each other and discriminated by their subregion-level
statistical accident records.

Specifically, we replace zero-value risk of vi in each time
interval with the negative statistical accident intensity πvi :

πvi = b1log2εvi + b2 (2)

where εvi is the statistical accident indicator quantifying the
accident frequency of vi among all subregions. b1 and b2 are
the coefficients to maintain symmetry between the range of
the absolute value of πvi and true risk values. It reflects
the fact that a zero-item subregion is with lower accident
risk than subregions with accidents, and the subregion with
lower accident risk indicator has a lower accident prob-
ability, preserving the ranks of actual accident risks. The
transformation ensures the accident intensity value negative
and different from each other, enlarging the gap between the
positive and negative samples.

Complementing sparse sensing data in fake sparsity
issue. The collected real-time traffic information for acci-
dent prediction is usually insufficient [29]. Fortunately, the
dynamic traffic statuses tend to have interactive effects with
the spatial road network structures [30]. We thus adopt a co-
sensing strategy based on spatiotemporal deep factorization
machine (ST-DFM) [31], by taking advantage of the static
and contextual information.

The road network similarities between subregions are
first extracted by static affinity matrix As where the item
αs(i, j) in As denotes static affinity between subregion vi
and vj . The static affinity can be calculated by

αs(i, j) =


1

if subregion vi and
vj are adjacent

e−JS(si‖sj ) otherwise

(3)

Here, the JS function is the Jensen-Shannon divergence [32]
which measures the similarity between two distributions.
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ST-DFM contains the Compressed Interaction Network
(CIN) module and the DNN module. Multi-source features
within three spatiotemporal fields i.e. static spatial features,
dynamic traffic features and timestamps are embedded into
a fixed-length vector. The CIN module learns the field-wise
interactions in a vector-wise level while the DNN module
projects features into high-level representations and finally
obtains complex feature combinations. We infer speed val-
ues by feeding traffic volumes and corresponding static
and contextual information at the same subregion into ST-
DFM and vice versa. Therefore, the ST-DFM can be trained
with the intersections of two real-time traffic datasets within
the same spatiotemporal scopes and the citywide traffic
information can thus be maximumly inferred.

Fig. 4: Illustration of intrinsic sparsity and fake sparsity. (a)
There only exists 6 accidents in one 10-min interval of Jan,
01, 2017 in NYC, indicating the intrinsic sparsity of events
like accidents. (b) There are only 23 deployed cameras in
approximate 11 km2 but flows are everywhere, indicating a
fake sparsity.

3.3 DT-GCN based Spatiotemporal Encoder
In this section, we elaborate our proposed Differential Time-
varying Graph neural Network (DT-GCN). As shown on the
left part of Figure 1(a), the occurrences of accidents force the
traffic flows to accumulate, eventually leading to the risk
propagation along adjacent road segments. And subregions
share similar both static (e.g. intersection structures) and
dynamic traffic patterns may suffer accident concurrences
with the same weather during near intervals. The core idea
of GCN is to aggregate adjacent information and obtain local
patterns with the designed aggregation matrix and learnable
convolution kernels. Therefore, we inherit GCN as the ba-
sic framework in DT-GCN spatiotemporal encoder, taking
advantage of its potential in modeling non-Euclidean cor-
relations and subregion-wise risk propagations [30]. Here,
we further propose the time-varying overall affinity and
differential association generator as the aggregation matrix
and novel graph signal operation by identifying distinct
observations in very short-term accident datasets.

3.3.1 Time-varying Overall Affinity Matrix
Since it is difficult to capture accident patterns directly, we
introduce general traffic statuses such as speeds, flows to
help the prediction [33], [34]. Intuitively, the traffic statuses
reveal spatial dependencies among each subregion [35], [36]
and this kind of dependency is recently verified to be time-
varying [36], [37], as described in Figure 1(a). Besides, a

visualization of the backward differences of taxi trips/traffic
flows on two datasets is shown in Figure 1(b). The un-
dulant changes of traffic flows also provide the evidence
for the necessity to model the time-varying correlations.
Therefore, to specifically address our spatiotemporal multi-
granularity predictions, we propose a time-varying overall
affinity matrix Ao for measuring and aggregating the inter-
subregion time-varying proximities. The time-varying over-
all affinity is calculated by three perspectives, (i) affinity of
road network features, (ii) affinity of dynamic traffic statuses
and (iii) transitions of traffic flows between subregions,
where the former one is responsible for static similarity
extraction while the latter two are responsible for capturing
the dynamic spatial correlations. In interval ∆t, the item
α∆t
o (i, j) in A∆t

o denotes the dynamic overall affinity within
subregions vi and vj :

α∆t
o (i, j) = e−JS(s∗i ‖s∗j ) +γ∗e−JS(C∆t

i ‖C∆t
j ) + β ∗ tr∆t

ij (4)

C∆t
i includes the traffic volume TVvi(∆t) and average

speed avi(∆t) of subregion vi within the same interval
∆t in each day of last week. The tr∆t

ij is the element in
matrix TR∆t and describes the average transitions of the
interval ∆t during last week. Notice that we modify the
weights of static spatial attributes of subregions based on
their different effects on accidents with an attention-based
scheme. Also, the accident-based static features of subregion
vi can be denoted as s∗i . Further, a weighted factor γ, β
are used to adjust the proportion that each traffic prox-
imity measurement accounts for the overall affinity. With
such overall affinity, distant subregions but have potential
accident-related correlations regarding traffic characteristics
can also be connected dynamically. To transform the affin-
ity matrix into spectral domain and utilize the first-order
approximation, we calculate the normalized adjacent matrix
A∆t

C with A∆t
o [38]. First, we derive B∆t:

B∆t = A∆t
o + Im (5)

where Im is the identity matrix of m × m. Second, we
calculate Φ∆t by

Φ∆t =


ϕ11 0 · · · 0
0 ϕ22 · · · 0
...

...
. . .

...
0 0 · · · ϕmm

 (6)

where ϕii =
m∑
j=1

bij and bij is the element in matrix B∆t.

Then, we can obtain time-varying affinity-based normalized
adjacent matrix for aggregation by

A∆t
C =

(
Φ∆t

)− 1
2B∆t

(
Φ∆t

)− 1
2

(7)

3.3.2 Differential GCN for Extracting Spatiotemporal Fea-
tures
It is observed that accidents or events in the road network
are more relevant to abnormal variations of urban traffic
conditions [33], [39]. The intuition can be explained that the
larger variations of fundamental traffic elements indicate the
abnormal changes in the road network, thus increasing the
possibility of accident occurrences. Fortunately, most cases
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of accidents in Figure 1(b) verify the correctness of this
intuition. To this end, we introduce a differential association
generator to calculate differential images within adjacent
time intervals. By feeding the differential images into GCN,
the propagations and interactions of abnormal changes in
traffic can be modeled and the immediate correlations be-
tween traffic condition variations and accidents are learned.
Given ∆t, the differential vector

−→
Θ

∆t
can be computed by

−→
Θ

∆t
= D(∆t)−D(∆t− 1) (8)

where D(∆t) = {dv1(∆t), dv2(∆t), · · · , dvm(∆t)} and
dvi(∆t) = {TVvi(∆t), avi(∆t)}. For all subregions in ∆t,
by combining their dynamic traffic features and the corre-
sponding differential vectors, we generate a united feature

tuple U(∆t) =

{
F(∆t),

−→
Θ

∆t
}

.

3.3.3 Long-term and Short-term Encoders
Traffic statuses and risks in subsequent time steps are
determined by both long-term expectations like seasonal
influences and short-term instantaneous statuses such as
recent trends and unexpected incidents [23]. Here, we sep-
arately encode long-term expectations and short-term sta-
tuses. Specifically, as illustrated in Figure 3, given ∆t, we
first retrieve the fine-grained united feature tuples U(·) for
the same interval ∆t in the last τ weeks and the recent τ
days respectively, and denote them as the weekly and daily
components of the training sample. Next, the average values
of observations are calculated for both the corresponding
weekly and daily components of this sample, and are taken
as two distinctive inputs of the long-term DT-GCN encoder.
After then, we take the most recent h time intervals as
the short-term instantaneous traffic inputs of our DT-GCN
encoder 3. The detailed architecture of one individual DT-
GCN is demonstrated in Figure 5, where⊕ denotes element-
wise addition in residual shortcut connections [40]. For
interval ∆t, we denote the corresponding feature tuple set
as U∆t

∗ . The GCN works recursively as,

Hn+1 = Leaky ReLU(A∆t
C HnWn) where H0 = U∆t

∗ (9)

Here Hn andWn indicate the hidden representations of the
nth layer graph convolution block and the weights of the
corresponding convolution kernels, respectively. The learn-
able kernels can automatically distinguish the importances
of region-wise correlations and aggregate adjacent graph
representations from three different perspectives of the time-
varying overall affinity. By employing several residual con-
nections, we also combine the low-level convolution feature
maps with the high-level feature maps to capture the multi-
hop node-wise correlations, and subsequently enhance the
graph representation [41]. Noted that the Batch Normaliza-
tion (BN) operations are inserted into every 2 GCN layers to
avoid gradient explosions. Considering the negative values
in the dataset we transformed, we select the Leaky ReLU
as the activation function. In addition, the contextual ex-
ternal factors, i.e., timestamps and meteorological data, are
embedded into a fixed-length vector consecutively, and then
are fused with the outputs of GCN blocks. Finally, for each

3. According to the settings in [10], we here set the values of τ and h
as 3 and 6, respectively.
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Fig. 6: Accident statistics under different contexts. It summa-
rizes the accident occurrences of three subregions #46, #62,
#317 in NYC during three selected 10-day periods in 2017
which all contain 5 rainy days and 5 days without rain.

interval, the output of the DT-GCN encoder is mapped into
a one-channel feature map. Given the sequential nature of
the long-term and short-term inputs, the outputs of the DT-
GCN encoder are consequently formulated as a fine-grained
risk-map sequenceMF = {MF

0,MF
1, ...,MF

h+1}.

3.4 CG-LSTM based Spatiotemporal Decoder

Extensive experiments reveal that, due to the possible severe
error accumulation of RNN-based methods [10], [42], the
forecasting performance declines rapidly with the increase
of prediction steps. Based on the analysis of real-world his-
torical data, we discover that some time-sensitive contextual
factors such as meteorology can significantly influence the
occurrences of traffic accidents, especially in some specific
subregions or road segments where the traffic volumes are
relatively stable with different weathers. For instance, in
SIP, there are 2.26 accidents occurring averagely on rainy
days while there are only 1.89 accidents averagely on one
sunny days. Figure 6 illustrats some cases of the correlations
among the contextual factors and accidents in NYC. To this
end, both the spatiotemporal correlations and the contextual
factors should be carefully involved in step-wise future
traffic accident predictions.

Based on real-world data analysis, we further discover
that urban accidents usually follow clustering distributions
in spatial perspective, and local accident risks can be in-
fluenced by surrounding traffic statuses. Thus, considering
above two factors, we design a novel CG-LSTM decoder,
which employs a hierarchical sequential learning structure
to jointly learn accident distributions in both coarse-grained
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and fine-grained granularities with contextual factors in-
volved, to achieve high-quality accident predictions.

The core idea of the CG-LSTM decoder is to guide the
learning of step-wise accident maps with contextual factors,
and to enhance the spatial representations in the hierarchical
LSTMs with multiple tasks. CG-LSTM decoder consists of
two parallel LSTM components: F-LSTM and C-LSTM. First,
the sequential outputs of the DT-GCN encoder and the
aggregated spatial coarse-grained risk maps are considered
as two separate inputs for F-LSTM and C-LSTM. Given
the intensive nature of coarse-grained risk distributions,
we then take C-LSTM as an intermediate to enhance a
series of urban graph representations. Specifically, C-LSTM
sequentially receives the contextual factors of each future
time step and adds them into the hidden states learned in
the previous step. The combined hidden vector with con-
textual factors then represents the potential importance of
contextual factors specific to each subregion. Given interval
∆t, we denote the coarse-grained risk map and hidden state
in the C-LSTM Cell as MC

∆t and IC∆t respectively, and
the hidden state in ∆t+1 can be updated by previous states
and current context factors:

I∆t+1
C = LSTMC(M∆t+1

C , [Wext ∗ E∆t+1 + I∆t
C ]) (10)

where E∆t represents the context-guided factors, and Wext
refers to the context alignment weights which are used to
adapt the same dimension with I∆t

C . So far, the C-LSTM
structure can easily capture the step-wise accident-context
interactions, and can adaptively control the risks and mit-
igate the error accumulation in sequential predictions. To
further guide the learning process, we design a risk-assign
layer to propagate the context influences to fine-grained
distributions in F-LSTM by learning the latent hierarchi-
cal spatial correlations. Then the learned risk assignments
are added into the previous-step hidden representations
element-wisely for subsequent temporal dependency learn-
ing. Regarding the fine-grained risk learning in F-LSTM, the
risks can be learned from two aspects, the spatial backbones
of risk distributions obtained from DT-GCN and the risk
intensities controlled by the hidden representations in C-
LSTM, hence the risk representations can adaptively learn
both self and neighborhood dependencies with temporal
modeling. Given ∆t, the learned hidden states IF ∆t+1 in
F-LSTM can be modified by:

I∆t+1
F = LSTMF(M∆t+1

F , [Wasgn ∗ I∆t
C + I∆t

F ]) (11)

whereWasgn ∈ RIf×Ic indicates the learnable weights in the
risk-assign layer, Ic and If represent the hidden dimensions
in C-LSTM and F-LSTM respectively.

Similarly, the counterpart risk-gather layer performs
graph-coarsen operations to gather coarse-grained risks into
a graph-level summation of accident records R̃∆t

S , namely,
the city-level risk indicator of interval ∆t.

R̃∆t
S = Wgath ∗ I∆t

C (12)

where Wgath ∈ R1×Ic indicates the learnable weights of the
risk-gather layer. The hidden states in both F-LSTM and C-
LSTM will be further mapped into the same dimension with
their corresponding input sequence. We eventually obtain
the learned spatiotemporal multi-granularity risks by:

O∆t
F = Leaky ReLu(WRF ∗ I∆t

F +bRF ) (13)

O∆t
C = ReLu(WCF ∗ I∆t

C +bCF ) (14)

Since the fine-grained risk labels are partially negative,
and the coarse-grained risks are all positive, we adopt
Leaky ReLU and ReLU as their activation functions, re-
spectively. Here, WRF ∈ Rm×If and bRF ∈ Rm×1 are
the weights and biases for mapping layers of fine-grained
risks while WCF ∈ Rq×Ic , bCF ∈ Rq×1 are the weights
and biases for layers aggregating coarse-grained risks, O∆t

F

and O∆t
C are the learned fine-grained and coarse-grained

risk distributions respectively. The three spatial scales of
accident risk learning can not only be viewed as multi-
granularity predictions, but also can jointly optimize rep-
resentation abilities as a task-wise regularization.

3.5 Most-likely Accident Region Selection

For selecting the most-likely accident subregions, we de-
vise an adaptive high-risk region selection mechanism with
considering both the spatial heterogeneity issue and time-
varying citywide risk levels. Specifically, the risk-assign con-
nections between the multi-scale spatial risk distributions
allow the fine-grained risks to take peripheral urban areas
into account and adequately absorb the hierarchical corre-
lations. For ∆t, we take the learned summational risks R̃∆t

S

as the citywide risk indicator and let the adaptive threshold
of the high-risk subregion number be K(∆t) equalling to
R̃∆t

S . Regarding each interval, we select K(∆t) subregions
with the highest risks from O∆t

F as a set of most-likely
accident subregions VM . Then, the learned K(∆t) reduces
the number of over-predicted regions and keeps the outputs
conform to the time-sensitive changes of contextual factors.

3.6 Optimization

The r tuple outputs {< OT+1
F ,OT+1

C , R̃T+1
S >, ..., <

OT+r
F ,OT+r

C , R̃T+r
S >} constitute a predicted spatiotem-

poral multi-granularity accident risk sequence, where each
tuple denotes the results of one time step. In the training
process, we have the total loss of this multi-task risk-
oriented learning framework:

Loss(θ) = MSEF +λ1 ∗MSEC +λ2 ∗MSER +λ3 ∗L2 (15)

where θ represents all learnable parameters in our frame-
work. MSEF , MSEC and MSER are the mean square errors
of the risks in fine-grained, coarse-grained, and citywide
scales. We here employ L2 regularization to avoid the over-
fitting issue, and use λ1, λ2, λ3 as the hyperparameters of
the loss function.

For optimizing the algorithm, we introduce Adam op-
timizer [43]. The learning rate, which has a decay of 0.98
in every 10 epochs, is initialized as 0.001. Early stopping
technique is also applied during the training process to
avoid overfitting.

4 EXPERIMENTAL STUDIES

In this section, we conduct extensive experiments to evalu-
ate our method for spatiotemporal multi-granularity traffic
accident prediction from multiple perspectives, including
performance comparisons, ablation studies and case studies.
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4.1 Data Description

The experiments are conducted on two real-world datasets:
NYC Opendata between 1st Jan, 2017 and 31st May, 2017,
and Suzhou Industrial Park (SIP) dataset between 1st Jan,
2017 and 31st March, 2017. For NYC dataset, we utilize
the taxi trip volumes in each subregion as the indicator of
human mobilities. For SIP dataset, it only contains traffic
flows and speeds and we integrate it with another traffic
accident dataset collected from Microblog, Sina, a social
media platform. The statistics are shown in Table 3.

4.2 Experimental Settings

4.2.1 Implementation Details

In our experiments, we select 60%, 30% and 10% of dataset
for training, evaluation and validation, respectively. The
whole city of NYC is partitioned by small squares sized
1.5 km ×1.5 km and obtain 354 square-shaped subregions
and 18 rectangular regions. In SIP dataset, 108 surveillance
spots are gathered into 6 rectangular regions 4. The accidents
are transferred into corresponding two-scale risk distribu-
tions. All default settings of parameters involved in our
framework are summarized in Table 4. Then the missing
values and zero-value risks are complementing with ST-
DFM and PKDE strategies to enhance the performance. Due
to the incomplete accident records on Microblog, we omit
the input of accidents in our framework and maintain the
main components for traffic indications.

During training periods, dynamic traffic data and affin-
ity matrices are aggregated into three groups, which consist
of two expected historical observations and a sequence
indicating short-term instaneous dynamics. The RiskSeq is
trained with backpropagations and Adam method [43]. We
eventually attain both coarse-grained and fine-grained acci-
dent distributions in the following 6 time steps and select
the most-likely accident regions according to rankings.

4.2.2 Evaluation Metrics

We evaluate our proposed RiskSeq from two perspec-
tives [20]. (1) Regression perspective: Mean Square Error
(MSE) of predicted risks. (2) Spatial classification perspec-
tive: a) Accuracy of top M (Acc@M ) [44], which is widely
applied in spatiotemporal ranking tasks, indicates the per-
centage of accurate predictions in subregions within M
highest risks. Considering the actual capacity of urban traf-
fic adminstration [45], we select approximate 5% subregions
as the most-likely accident regions for comparison in our
test. Thus, M equals 20 and 6 in NYC and SIP dataset re-
spectively, that means subregions with 20 and 6 highest risks
in NYC and SIP will be considered as high-risk subregions
to compare with real-world accident records. b) Acc@K is
an adaptive selection metric where K is the learned city-
level risks in our framework.

4. The settings of the spatiotemporal partition should leverage the
tradeoff between the accuracy and spatiotemporal granularity. Note
that such a setting may be related to the results of accident prediction
but is orthogonal to the generalities of our proposals.

5. It refers to different traffic-related records in the city.

TABLE 3: Datasets statistics

City Dataset5 Time Span # of
Regions

# of
Records

NYC

Accidents
01/01/2017-
05/31/2017 354

254k
Taxi Trips 48,496k

Speed Values 125k
Weathers 604

Demographics Investigated
in 2016

195
Road Network 102k

SIP

Accidents
01/01/2017-
03/31/2017 108

183
Traffic Flows 1,399k
Speed Values 311k

Weathers 180

TABLE 4: Parameter Settings during training period

Symbol Description Value
∆t Granularity of time intervals 10 min
ρ Connectedness of urban graph 10%
h Length of recent risk sequence 6
r Multi-step horizons 6

(If , Ic) Hidden state dimensions in fine-
grained and coarse-grained feature maps (256, 48)

(γ, β) Importances of elements in αo (1, 0.8)

(λ1, λ2, λ3) Weights of loss function (1.2, 0.8,
1e-4)

- Number of GCN blocks 6
- Number of GCN learnable kernels 256

4.2.3 Baselines
Eight competitive baselines for spatiotemporal prediction
which have the potential to solve our task are as follows.
For fair comparison, we realize all these baselines to predict
next 6 step accident risks with 12 previous time steps
and three influential factors as ours (i.e. traffic volumes,
average speeds and accidents) unless specified. All the
hyperparameter settings of baselines are initialized based
on their literatures and codes, and then we fine-tune them
on our dataset and make themselves achieve their optimal
performances.

(1) ARIMA is a classic machine learning algorithm,
well-known for predicting future values, especially for time
series. Here we utilize the accident time series and the
parameter tuple in ARIMA (p, d, q) is set as (1, 2, 6).

(2) LSTM is a classic deep learning-based time se-
ries modeling method with long short-term memory mod-
ule [16]. We realize this LSTM with 64 neurons in each
hidden layer.

(3) Hetero-ConvLSTM is an advanced deep learning
framework for traffic accident prediction [13]. The sizes
of maps of NYC and SIP are 27×27 and 15×10, and the
convolution kernels are set as 3×3 for both two tasks. We
involve previous 6 time steps to predict the next 6-step risks.

(4) STGCN is a multi-step traffic forecasting model,
integrating graph convolution and gated temporal convo-
lution by several spatiotemporal convolutional blocks [46].
We realize it by stacking two ST-Conv blocks, and each block
consists of three layers with 64, 64, 64 filters.

(5) STG2Seq targets multi-step citywide passenger de-
mand prediction based on an urban graph, and it employs
a hierarchical graph convolutional structure to capture both
spatial and temporal correlations simultaneously [10]. We
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set 6 GCN blocks with 32 filters, and set the sizes of both
sliding window and patch as 3.

(6) STSGCN is designed for spatiotemporal data fore-
casting, which captures localized spatiotemporal correla-
tions and heterogeneities with a synchronous network [11].
We incorporate 4 synchronous graph convolutional layers
and each layer includes 3 convolution operations with 64,
64, 64 filters.

(7) STDN proposes the flow gating and shifted atten-
tion to jointly model volume and flow interactions, and to
address temporal shifting issues in spatiotemporal forecast-
ing [7]. We stack 3 CNN layers and each convolution kernel
is 3 × 3 with 64 filters. Each neighborhood accounts for 7×
7 grids and hidden dimensions of each LSTM is set as 128.

(8) DFN combines a hierarchical recurrent structure with
a context-aware embedding module to perform daily ac-
cident prediction [12]. The spatial embedding size, hidden
layer and attention dimensions are all set to 32.

(9) MTPSO is a turbulent PSO-based method targeting
time-series prediction, which introduces fuzzy relationships
for robust predictions [3]. We realize it with three groups of
influential factors and 12 previous time steps.

4.3 Evaluation Results

4.3.1 Comparison Performance
The comprehensive performances are illustrated in Table 5,
which are the averaged errors and accuracies on all time
steps. MSE-F and Acc@M measure the performance of
fine-grained forecasting while MSE-C evaluates the coarse-
grained prediction. We sum up the corresponding fine-
grained risks to coarse-grained ones for baseline methods
as they lack this output.

Encouragingly, RiskSeq achieves the highest accuracies
and low MSE among all compared methods. On NYC
dataset, our solution improves the best baseline by more
than 4% on Acc@20. With limited 180 events in SIP, our
RiskSeq achieves the highest accuracy of 71.27%, which
surpasses the best baseline by nearly 5%. It means that
more than 55% and 70% of real-world accidents are hit by
our model on top-20 in NYC and top-6 in SIP, respectively.
The reasons for relatively higher performance in SIP may
lie in that the events are few and also regularly occur in
the limited intersections. It is not astonishing that MSE-
C values are consistently larger than MSE-F, as the coarse
risks are risk summations of square subregions, but it still
reveals the superiority of our multi-task learning that this
scheme can enhance the multi-scale risk representations and
improve the performance. The acceptable coarse-grained
results (MSE-C) can reflect the effectiveness of RiskSeq in
high-level coarsen risk modeling and the scalability of our
method in smaller or medium-sized cities.

ARIMA and MTPSO take temporal dependencies into
account while deep learning models can simultaneously
encode both spatial and temporal correlations, and reason-
ably most deep models perform better than ARIMA and
MTPSO. Thanks to the separated long-term and short-term
modeling as well as the graph convolutions and gated
mechanisms, STGCN and STG2Seq are capable of captur-
ing short-term traffic variations and achieve better results
than other baselines. Even though Hetero-ConvLSTM and

TABLE 5: Comprehensive performance comparisons

NYC/SIP
Models Acc@20/Acc@6 MSE-F MSE-C
ARIMA 20.72/30.63 0.0192/ 0.0162 0.0492/0.2215
LSTM 28.98/35.70 0.0179/0.0255 0.0477/0.2694

Hetero-
ConvLSTM 28.03/34.84 0.0161/0.0487 0.1015/0.4039

STGCN 50.42/51.27 0.0188 /0.0452 0.0492/0.2885
STG2Seq 52.08/54.30 0.0138/0.0364 0.0693/0.1667
STSGCN 26.46/33.59 0.0183/0.0236 0.1285/0.3473

STDN 37.48/42.18 0.0203 /0.0354 0.0853/0.2142
DFN 40.26/36.98 0.0194 /0.0376 0.0548/0.2278

MTPSO 30.81/33.69 0.0218 /0.0420 0.0393/0.2065
RiskSeq 56.42/71.27 0.0158/0.0401 0.0443/0.2702

DFN which focus on daily predictions try to consider the
spatial heterogeneities with ConvLSTM blocks ensembled
and multi-scale temporal dependencies with hierarchically
structured recurrent framework, respectively, they still can-
not adapt the multi-step short-term event forecasting due
to irregular-shaped urban areas and extremely sporadic
event distribution. Noticed that the state-of-the-art method
STSGCN performs worst among all deep methods, and
this may be ascribed to the rescaled adjacent matrices and
redundant connections between adjacent intervals. More-
over, STSGCN, STDN and Hetero-ConvLSTM are with high
computation costs for their ensembles, pixel-wise operations
and extended adjacent matrix. Also, all baselines fail to con-
sider the available time-sensitive influences and hierarchical
spatial dependencies into step-wise forecasting, hence they
may lack the capability of predicting multi-step events.

4.3.2 Evaluations on Stability of Multi-step Performance
To evaluate the long-term stability of our solution, we illus-
trate the step-wise accuracy in the following 6 time steps
among all methods in Figure 7.

Intuitively, STG2Seq, STGCN and our RiskSeq perform
much better than others due to their nice property in GCN-
based sequential modeling. Specifically, we observe that the
performance of our method keeps steady, retaining highest
accuracy of more than 50% and 65% even at the last time
step in NYC and SIP. An interesting finding comes that
RiskSeq achieves the best performance at the third step
which may be attributed to the nature of traffic variations
and the selection of time steps in spatiotemporal encoders.
By these results, the potential superiority of the combination
of LSTM and hierarchical context-guided mechanism for
capturing both contextual interactions and spatiotemporal
dependencies is practically confirmed.

4.4 Ablation Study
To evaluate the importance of each proposed component
in addressing challenging issues, we perform the ablation
studies from two perspectives, i.e., dual-sparsity challenges,
and spatiotemporal dependency modeling.

4.4.1 Dual-sparsity Challenges
As discussed above, spatiotemporal data mining usually
suffers two categories of sparsity, i.e., fake and intrinsic.
To verify whether the proposed data preprocessing method
makes sense, we omit the PKDE data augmentation and
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(a) Step-wise performance in NYC (b) Step-wise performance in SIP

Fig. 7: Evualtion on step-wise performance in NYC and SIP

co-sensing network separately with remaining components
named RS-PKDE and RS-DFM. In Table 6, without data en-
hancement and co-sensing strategy, the performances suffer
a sharp decrease of 37.86% and 13.37% in NYC and also
show an obvious downtrend to 35.48% and 58.94% in SIP,
verifying the effectiveness of our well-designed strategies.

4.4.2 Spatiotemporal Dependency Modeling
In spatiotemporal modeling views, we subsequently remove
or replace some components as the ablative variants.

(1) RS-OA: We replace the time-varying Overall Affin-
ity with the static adjacent matrix which calculated by the
static similarities based on Eq (3).

(2) RS-DG: We remove Differential association Gener-
ator directly in the ablative version.

(3) RS-RC: We cut off the Residual Connections in DT-
GCN in this variant.

(4) RS-CF: We omit the Contextual Factor inputs for
guiding the decoder learning and let it learn without step-
wise time-sensitive contexts.

(5) RS-CGLSTM: We remove the inputs of coarse-
grained maps and replace the CG-LSTM with only one
LSTM as the sequence decoder.

As can be seen, the integrated RiskSeq outperforms all its
ablative variants on both datasets. We observe that the time-
varying overall affinity contributes to the most remarkable
improvement which is up to 18% in NYC and 4% in SIP on
accuracy metric. With Residual Connections and Differential
feature Generator in DT-GCN, our framework is able of
aggregating mixed high-order correlations among subre-
gions and capturing the abnormal changes within short
terms, resulting in the improvements ranging from 1.82%
to 13.63%. In addition, by removing the context-guided
mechanism, we obtain the average results of 43.04%. The
performance of RS-CGLSTM is most aprroximate to the re-
sults of integrated RiskSeq with the gap of 8%. It implicates
the Occam’s Razora principle that a light-weight model may
perform better than the average. From the exciting results,
we conclude that all well-designed components in RiskSeq
exactly play important roles in our spatiotemporal multi-
granularity prediction.

4.5 Hyperparameter Tuning

To illustrate how different hyperparameters affect the per-
formance of the proposed framework, we show the tuning

TABLE 6: Ablative variants performance on two datasets

NYC/SIP
Variant MSE Acc@20(Acc@6) Acc@K

RS-PKDE 0.0053/0.0512 18.56/35.48 16.28/29.45
RS-DFM 0.1260/0.0216 43.05/58.94 38.29/46.28
RS-OA 0.0116/0.0127 37.57/67.16 32.47/61.15
RS-DG 0.0118/0.0136 46.45/68.52 39.19/55.27
RS-RC 0.0208/0.0082 41.79/69.45 38.19/56.33
RS-CF 0.0123/0.0355 43.04/67.83 33.21/50.18

RS-CGLSTM 0.0128/0.0060 48.45/67.19 -
Integrated RS 0.0158/0.0040 56.42/71.27 47.18/65.26

TABLE 7: Performance on different train/test ratios

Ratio of Train/Test 2:1 3:1 4:1 5:1
Performance(Acc@20) 9.11 36.72 41.55 45.89

Ratio of Train/Test 6:1 7:1 8:1 9:1
Performance(Acc@20) 48.11 36.04 33.07 31.92

process of hyperparameters on NYC dataset. First, we adjust
the number of GCN blocks and filters in each layer to
make itself reach their best performance. It arrives the best
performance at 6 GCN blocks and 256 kernels in each layer
because the deep GCN layers should maintain an equi-
librium between the robustness and algorithm complexity.
And q equals 18 among {9, 18, 33}when the Acc@20 arrives
the highest at 53% approximately. Intuitively, the larger q
induces less subregions included in one rectangular regions
and vice versa. By equilibrating the tradeoff between the
serious zero-inflated issue in coarse-grained risk learning
and the redundant and complex inter correlations, we fi-
nally obtain 18 rectangular subregions in NYC based on
extensive experimental results. We show the performance
varying with the number of DT-GCN layers, filter kernels
and different q in Figure 8.

For multi-task learning, we fix the weight of main task as
1, and tune λ1, λ2 by grid searching. Similarly, the searching
is also performed on the importance of dynamic elements in
overall affinity, and it reaches the best when (γ, β) equals
(1, 0.8). We summarize the performance comparison in
terms of λ, γ, β, in Table 8.

We also investigate the influences of the ratio of the train-
ing samples versus the testing samples, and our RiskSeq
performs better when the train-test ratio ranges from 5:1 to
6:1 in Table 7. It is consistent with the fact that more training
samples can help capture deep spatiotemporal correlations
and reduce epistemic uncertainty, but excessive data may
also increase the aleatoric uncertainty and noises reversely.

TABLE 8: Performance on different hyperparameter settings

λ1 λ2 Acc@20 γ β Acc@20
0.8 0.8 38.16 0.5 0.5 41.02
0.8 1.2 41.14 0.5 0.8 49.61
1 1 45.71 0.8 0.5 46.51

1.2 0.8 54.26 0.8 0.8 49.63
1.2 1 53.28 0.8 1 51.40
1.5 0.8 47.19 1 0.5 51.50
1.5 1 48.74 1 0.8 52.65
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(a) Performance with different GCN settings (b) Performance with different q

ρ-connectedness for each node

(c) Performance with different 

LSTM hidden layers

(d) Performance with different

ρ-connectedness

Fig. 8: Performance on different parameter settings

4.6 Efficiency of RiskSeq

We implement the proposed framework RiskSeq on a single
Tesla V100 with 16GB. Python 3.6 and Tensorflow 1.9.0
libraries are involved to help build deep graph neural
networks. The framework is trained offline and parameters
learned are utilized for the online prediction. Here we
present the analysis of time complexity of our framework.
Let the number of neurons in each GCN block be O(n),
the number of parameters in our DT-GCN is O(n2). In
our implementation, n is set to 256 and GCN contains 6
blocks. The total number of parameters is 256×256×6. In
our testing, it takes an average of 5.6 seconds to do one
round of accident forecasting, which sufficiently meets the
requirement of real-time multi-granularity forecasting.

4.7 Case Study

To provide an intuitive understanding of our RiskSeq, we
visualize the results in the following two scenarios.

The period-oriented evaluations are presented in Fig-
ure 9(a), and we also collect the corresponding precipita-
tion 6. As shown, risks are marked in a distinctive way and
the highlighted subregions show spatial similarities with
the ground truth. Manhattan District is always with higher
risks and more accidents probably due to its highly dynamic
traffic conditions and overloaded crowd flows. As observed,
mornings and evenings tend to suffer fewer accidents while
it becomes different in the afternoon. This is because fewer
people will go for work on weekend mornings and they may
go out for leisurely activities in the afternoon. The increasing
number of vehicles in the road network and the identified
rain subsequently lead to an accident-prone road situation
around 2 p.m. In the evening, the color of risk map becomes
deeper and risks are mostly focused in northern NYC, as the
inherently higher risks in the night, and both nightclubs and

6. https://www.wunderground.com/history/daily/us/ny/new-
york-city/KLGA/date/2017-4-22

bars are concentrated in Bronx District, the north of NYC.
The results verify the motivation and effectiveness of time-
varying region-wise modeling as well as the context-guided
learning in different typical intervals.

Figure 9(b) shows the sequential results integrally de-
rived by RiskSeq. At 10 a.m., the accidents are sporadically
distributed in the city and there is only one accident in
Manhattan subregion. However, with too many officers
hurry to their working places, the accident circle, especially
Manhattan subregion, is expanding and the sporadic acci-
dents gradually evolve into three clusters. The reasons may
boil down to the fluctuations of traffic volumes and the
abnormal traffic changes around 10 a.m. Once the accidents
occur in the crowded subregions, the accumulated vehicles
tend to propagate the risks along the road segments from
the accident spot centers. The rainy days make it worse.
Furthermore, the aggregated accident clusters may follow
a hierarchical distribution. Therefore, the competitive re-
sults demonstrate the potential superiority of propagation
scheme and differential association structure in GCN as well
as the hierarchical sequential learning in CG-LSTM decoder.

We conclude our careful-designed RiskSeq can not only
perform well on sequential learning, but capture the time-
varying dependencies during different typical periods.

5 DISCUSSION

In this section, we discuss some related interesting issues.
General Applicability of RiskSeq. The core idea of

RiskSeq is to dynamically aggregate neighborhood graph
signals for better risk representations and to enhance
interval-level predictions by employing step-wise context
injections and multi-scale learnings. Besides promising per-
formances of accident predictions, our work has the po-
tential to benefit other downstream tasks in spatiotemporal
forecasting. Crimes and epidemics share similar properties
with traffic accidents, which occur occasionally and also
exhibit interactions between spatial dependencies and hu-
man mobilities. After mitigating data incompletions with
ST-DFM and urban covariates, and alleviating the issue
of rare events with PKDE, multiple urban data sources
are formulated into a graph. Human-related data as well
as task-specific historical records are fed into DT-GCN for
capturing time-varying and abnormal situations, and the
multi-step predictions are boosted with CG-LSTM decoder.

Novel insights provided by RiskSeq. Targeting two
inevitable sparse scenarios, we systematically address both
intrinsic and fake sparsity by proposing novel strategies.
We transfer the sparse event prediction into a learnable
regression and ranking task which can be solved with
DNN. This inspires researchers to mine the inherent and
latent correlations in spatiotemporal sparse datasets from
the perspective of sparsity origins. Novel sparsity divisions
(e.g. node and edge sparsity in the network) and unified
solutions with both new operations and problem trans-
formations are encouraged to support a variety of sparse
scenarios. These related studies may eventually settle more
sparse challenging tasks in fields including recommenda-
tion systems, fault detections and social community studies.

Limitations of RiskSeq. In our accident prediction task,
the classification error decreases when regression error in-
creases due to the non-accident subregions are dominated
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Fig. 9: RiskSeq Visualization

in the city. Therefore, we should conduct further studies
for a more concise, cost-sensitive model by equilibrating
the tradeoffs between the pair of classification accuracy and
regression capacity, as well as the pair of model complexity
and interpretability. Another limitation is that RiskSeq still
cannot fully avoid the over-predicting, and may reach its
accuracy bottleneck. The accuracy bottleneck mostly pins on
lacking the ability to sense the risks of individual vehicles.
One possible solution is to collect individual statuses and
improve local risk awareness with edge computing devices.

6 RELATED WORK

In this section, we review related studies in three aspects,
namely traffic accident prediction, classical time-series pre-
diction and spatiotemporal traffic prediction.

Traffic accident prediction. Accident forecasting can be
roughly folded into long-term forecasting [8], [12], [13], [24]
and short-term forecasting [14], [15], [16], [17], [18], [20],
[25], [26], [47]. Specifically, long-term forecasting methods
model traffic-related data to predict the daily risks [2], [12],
[13], [24]. For example, Chang et, al studied the highway
accident frequency by a tree-based model on day levels [24].
Recently, Yuan et, al proposed a daily risk forecasting frame-
work by employing a series of ConvLSTM sub-learners [13]
and Huang et, al investigated to combine abnormal events
and accidents to jointly predict future accidents in consecu-
tive days with dynamic fusion network [12]. There has also
been a citywide abnormal event forecasting framework pro-
posed in [8], which shares similarity as accident predictions.
Even so, all these daily forecasting models cannot support
real-time traffic services and fail to incorporate unique char-
acteristics between urban data and accident occurrences.
Therefore, many efforts on short-term accident forecasting
have been achieved [14], [15], [16], [17], [18], [20], [25], [26],
[47]. Specifically, Lin et, al. formulated the task into a binary
classification with frequent-pattern trees and random forest
learning [25]. Some works quantified the spread of accident
risks by employing Network Kernel Density Estimation and

clustering methods [14], [15]. With the prosperity of deep
learning, deep encoder-decoder mechanisms were intro-
duced to satisfy the citywide risk predictions through stack-
ing fully-connected layers and convolution blocks [17], [18],
[26]. To deal with risk sequences and capture short-term
temporal dependencies, some researchers tried to modify
sequential learning schemes for accident predictions [16],
[20], [47]. Unfortunately, above-mentioned approaches ei-
ther model both spatial and temporal dependencies with
traditional learning methods, or apply existing deep learn-
ing frameworks, hence all of them fail to identify distinctive
observations in accident occurrences.

Classical time-series prediction. Forecasting accident
risks can be viewed as time-series predictions. Off-the-shelf
time-series predictions, like PSO-based methods [3], [4],
[5], and ARIMA [6] can well capture temporal correlations
and high-efficiently, but they mostly fail to address highly
dynamic and complex road network traffic status due to
their inherent linear or one-dimension fusions.

Spatiotemporal traffic prediction. Since traffic forecast-
ing is well recognized to solve with spatiotemporal mod-
elling, emerging researches proposed deep learning-based
methods to jointly address spatial and temporal dependen-
cies [7], [9], [10], [46]. These studies devised a series of meth-
ods such as diffusion convolution blocks and GCN-based
sequence learning to foresee fundamental traffic elements
and taxi demands in upcoming steps [10], [42], [46]. More
recently, [9] proposed a meta-learning-based spatiotempo-
ral forecasting method to increase the stability of transfer
by learning common knowledge from multiple cities and
[7] investigated a gate mechanism to model volume and
flow interactions, which advance spatiotemporal forecasting
community. However, the sporadic accident series with non-
sufficient spatial sensing data are different from intensive
and continuous sequences that can be trained without zero-
inflated issue.

In summary, even though traditional optimization meth-
ods like PSO were efficient and many advanced spatiotem-
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poral deep learning methods like ConvLSTM and STDN
have achieved promising results, none of above works
raised the issue of the multi-step short-term accident fore-
casting, which is more challenging due to the sporadic spa-
tial distribution and complex temporal tendency. Therefore,
these previous techniques were limited in addressing multi-
granularity spatiotemporal accident forecasting.

7 CONCLUSION

In this paper, we propose a novel unified framework,
RiskSeq, where sparse traffic accidents are learned with
multiple spatiotemporal granularities, benefiting diversified
requirements of travelers and traffic administrations. First,
we summarize two kinds of sparsity challenges and corre-
spondingly address these zero-inflated and sparse sensing
issues. Inspired by the fresh observations in traffic acci-
dents, we design a DT-GCN to enhance time-sensitive graph
representations of risks by capturing short-term changes
of urban traffics. To perform a multi-scale and multi-step
prediction, coarse-grained and fine-grained risk distribu-
tions are learned simultaneously. With CG-LSTM, we can
dynamically learn the region-context interactions and fur-
ther alleviate the error accumulations. Experimental results
on two real-world datasets prove the superiority of the
integrated structure of DT-GCN and CG-LSTM in RiskSeq.

Future directions of the task-specific promotion is to
leverage both global and local traffic information to max-
imumly reduce the individual random factors. The task-
independent improvement comes down to further handle
spatiotemporal sparsity issues for more general predictions.
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